Common Exadata Mistakes

Andy Colvin

Practice Director, Enkitec

IOUG Collaborate 2014

About Enkitec

- Global systems integrator focused on the Oracle platform
- Established in August, 2004
- Headquartered in Dallas, Texas
- Consultants average 15+ years of Oracle experience
- Worldwide leader in Exadata implementations

About Me

- 8 years at Enkitec
- Supporting Oracle since 1999
- Working with Exadata since 2010
- Oracle ACE
- Author of Expert Oracle Exadata second edition
- Blog blog.oracle-ninja.com
- Twitter @acolvin

Enkitec E4 2014

- 2 day Exadata conference in Dallas
 - June 1 3, 2014
 - http://www.enkitec.com/e4
- Tom Kyte
- Maria Colgan
- Tanel Poder
- Kerry Osborne

- Sue Lee
- Doug Burns
- Martin Bach

Why Exadata?

- Many databases are I/O bound
 - Slower fibrechannel
 - Older hardware
 - Shared infrastructure
- Exadata solves these problems
 - 40gbps InfiniBand
 - Dedicated Storage

Quick Exadata Primer

- Smart scans are the secret sauce
- Smart scans kick in with full object scans
- Without smart scans, you're probably in "The 3X Club"

Conventional RAC System

Quick Exadata Primer

Common Exadata Mistakes

- Classified into 2 types
 - Performance degrading issues
 - Issues that make Exadata management tougher
- Rule #1 You aren't special

SGA Sizing

Improperly Sized SGAs

- Large SGAs can be counterproductive (in a warehouse)
- A determining factor for full scans is the small table

threshold (_small_table_threshold parameter)

Small Table Threshold

- Default setting based on size of buffer cache
- Relative size of a segment to the buffer cache
- Calculation has changed over various versions
- Direct path reads required for smart scans

What Size SGA?

- For pure DW, smaller is better think 8GB
 - You'll get more smart scans, which use PGA memory
- OLTP is trickier
 - OLTP queries typically need larger SGA
- Start small you'll never get to shrink your SGA later

Hugepages

Hugepages

- Allocates memory in bigger "chunks"
 - Default page size 4KB
 - Huge page size 2MB
- Controlled via vm.nr_hugepages kernel parameter

```
[root@enkx3db01 ~]# grep hugepages /etc/sysctl.conf
vm.nr_hugepages=26014
```


Benefits of using Hugepages

- Less pages to manage = less resource consumption
- Huge pages cannot be swapped to disk

Before Hugepages

After Hugepages

ORACLE[®] Platinum Partner

Life Without Hugepages

• X2-2 Half Rack – 96GB RAM per node

[root@xxxxx ~]# cat /proc/meminfo
MemTotal: 98848968 kB
MemFree: 3093112 kB
Buffers: 487884 kB

PageTables: 28487608 kB VmallocChunk: 34359438787 HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 Hugepagesize: 2048 kB

After Enabling Hugepages

• X2-2 Half Rack – 96GB RAM per node

happy users

[root@xxxxx ~]# cat /proc/meminfo
MemTotal: 98848968 kB
MemFree: 25423728 kB
Buffers: 360304 kB

PageTables: 408268 kB VmallocChunk: 34359442083 k HugePages_Total: 30726 HugePages_Free: 10070 HugePages_Rsvd: 8018 Hugepagesize: 2048 kB

Hugepages in the Database

- Controlled with use large pages parameter
 - **TRUE** start up with huge pages if available
 - 11.2.0.3 can use a mix of huge/small pages
 - **FALSE** ignore huge pages that are available
 - **ONLY** instance starts if enough hugepages are available

Hugepages in the Database

• Excerpt from 11.2.0.4 alert log

Total Shared Global Region in Large Pages = 24 GB (100%)

Large Pages used by this instance: 12289 (24 GB) Large Pages unused system wide = 1425 (2850 MB) Large Pages configured system wide = 13714 (27 GB) Large Page size = 2048 KB

Caveats to Hugepages

- Only for SGA PGA cannot utilize hugepages
- Incompatible with AMM (memory_target)
- Compatible with ASMM (sga_target)

Allocating Hugepages

- Allocate enough pages to account for all SGA memory
 - See MOS note #401749.1 for script
- Don't allocate everything to huge pages
 - Over allocation leads to memory starvation, node

evictions

Over Indexing

(and under indexing)

Index Use on Exadata

- Index use is #1 smart scan killer
 - Direct path reads required for smart scans
- Mark indexes invisible in a warehouse
 - Global change at the database level

Index Use on Exadata (non-OLTP)

- Look at long running queries with SQL monitoring report
- If it's using indexes, try running with FULL hint to force

full table scans

• Try marking indexes invisible (in test)

Index Use on Exadata (OLTP)

- You'll still need many indexes in OLTP environment
- It can be a delicate balance
- Test, test, test before dropping indexes
- Start without them, add as necessary

Parallelization

Parallelization

- Parallel will (typically) force direct path reads
- Direct path reads are required for smart scans
- Beware allocating too many slaves
- Remember that smart scans already parallelize on I/O

Parallel Slave Allocation

• With no other activity, the more PX is better

Parallel Slave Allocation

• More PX slaves = a busier system

Auto Degree of Parallelism

- Oracle calculates DOP on the fly
- Beware of Auto DOP
 - Test extensively before implementing
 - It's getting better (big changes in 11.2.0.4)
- Requires DBMS.RESOURCE_MANAGER.CALIBRATE_IO
- Set PARALLEL DEGREE POLICY = AUTO

Controlling Parallelism

- Use Database Resource Manager (DBRM)
- Don't set "DEFAULT" for segment PX degree
- Try lower PX degree to start storage is already parallel
- Slowly ratchet up DOP operations powers of 2

Disk Selection

Exadata Storage Concepts

- Exadata is all about smart storage
 - Offload your workload via full scans
 - Single block reads come from flash

Exadata Disk Types

- 2 varieties of disks
 - High performance
 - V2 X3: 600GB 15,000RPM
 - X4: 1.2TB 10,000RPM
 - High capacity
 - 2TB 4TB 7,200RPM

Disk Read Performance Comparison

X3-2 High Capacity

drive [20:4] random read throughput: 127.24 MBPS, and 200 IOPS drive [20:5] random read throughput: 126.07 MBPS, and 200 IOPS

X3-2 High Performance

drive [20:4] random read throughput: 162.67 MBPS, and 407 IOPS drive [20:5] random read throughput: 162.66 MBPS, and 422 IOPS

X4-2 High Capacity

drive [20:4] random read throughput: 143.54 MBPS, and 203 IOPS drive [20:5] random read throughput: 143.76 MBPS, and 203 IOPS

X4-2 High Performance

drive [20:4] random read throughput: 155.27 MBPS, and 323 IOPS drive [20:5] random read throughput: 155.99 MBPS, and 329 IOPS

results pulled from "cellcli -e calibrate force"

Flash Read Performance Comparison

X3-2 Flash Read Test

[FLASH_2_2] random read throughput: 543.70 MBPS, and 37332 IOPS [FLASH 2 3] random read throughput: 543.33 MBPS, and 37303 IOPS

X4-2 Flash Read Test

[FLASH_2_2] random read throughput: 539.26 MBPS, and 45683 IOPS [FLASH 2 3] random read throughput: 539.42 MBPS, and 45184 IOPS

X4-2 High Capacity

drive [20:4] random read throughput: 143.54 MBPS, and 203 IOPS drive [20:5] random read throughput: 143.76 MBPS, and 203 IOPS

X4-2 High Performance

drive [20:4] random read throughput: 155.27 MBPS, and 323 IOPS drive [20:5] random read throughput: 155.99 MBPS, and 329 IOPS

results pulled from "cellcli -e calibrate force"

Which Disk Type?

- High performance for latency-sensitive applications
 - Heavy OLTP workloads
 - Write back flash cache changes this significantly
- For everything else, high capacity
 - Flash cache masks slower disks
 - 3.2TB of flash per cell on X4 (before compression)

Patching

Exadata Patching

- If you don't patch, you WILL hit bugs
- Patching isn't something to be scared of any more
 - GI/RDBMS patch (bundle patch)
 - OS/Firmware patch (Storage server patch)
- See MOS note #888828.1 for details

Exadata Patching

If you can apply a RAC PSU, you can apply an Exadata

bundle patch

- Storage server patches are infrequent
- Patches include bug fixes, new features

ASR

Automatic Service Request

- Free with your support contract
- No privacy issues one way communication
- Requires external VM or host running Solaris or OEL
- Speeds up service request resolution time

Automatic Service Request

ASR creates service requests when hardware breaks

exachk

exachk

- MOS note #1070954.1
- Checks cluster and database against Oracle "best

practices" at the time of release

- Requires root passwords for initial configuration
- Generates HTML reports with scorecard

exachk Recommendations

- Configure exachk to run in daemon mode
 - Prevents requirement for root passwords
- Focus on the failures, not the score

Other Common Issues

- Not using OEM 12c
- Role separated installations
- Larger RECO vs DATA diskgroup split
- Trying to make Exadata like your old platform

Questions

andy.colvin@enkitec.com @acolvin blog.oracle-ninja.com

